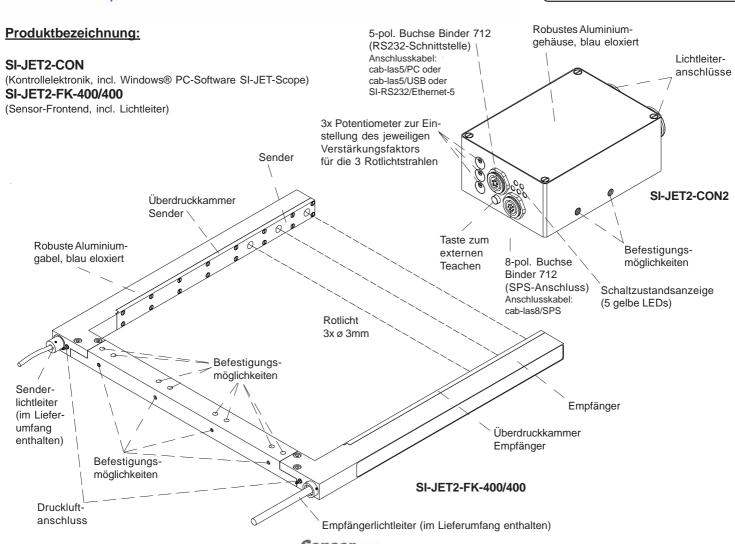
SI-JET Serie


SI-JET2-CON2 SI-JET2-FK-400/400

Das SI-JET2 Sprühstrahl-Kontrollsystem überwacht mit Hilfe der drei im Sender- und Empfängerzweig integrierten Lichtleiter die Dichte sowie die Symmetrie um den Öffnungswinkel des Sprühstrahls. Die umfangreiche Software SI-JET-Scope erlaubt eine Parametrisierung unter Windows®.

- Telezentrischer Aufbau, dadurch große Gabelweite möglich
- Verschmutzungsunempfindlich durch Druckluftvorrichtung (sender- und empfängerseitig)
- Einstellbare Mittelwertbildung (bis 32000 Werte)
- RS232-Schnittstelle und Windows®-Bedieneroberfläche
- Verschiedene Teach-Möglichkeiten (SPS, Taste, PC)
- Fremdlichtunempfindlich durch getaktetes Rotlicht (100 kHz)
- Hoher Dynamikbereich (durch Lichtleistungseinstellung der LED über RS232)
- Hohe Auflösung (12-Bit-A/D-Wandler)
- Lichtleitergabel geeignet für den Einsatz im



-Bereich (EX-RL, Zone 0)

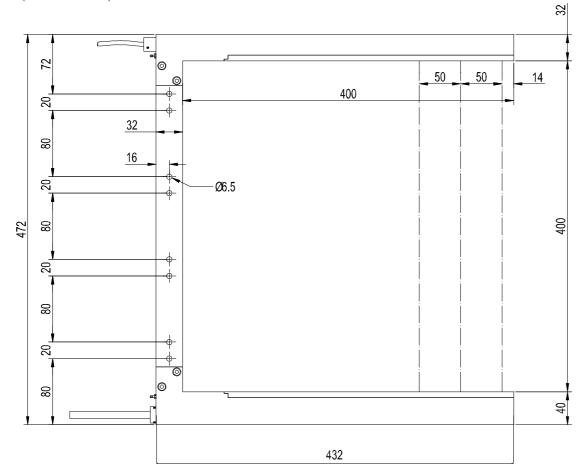
Aufbau

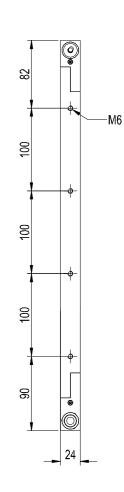
Instruments

Technische Daten

Тур	SI-JET2-CON2 (Kontrollelektronik)	
Spannungsversorgung	+24VDC (± 10%), verpolsicher, überlastsicher	
Stromverbrauch	typ. 200 mA	
Betriebstemperatur	-10°C 50°C	
Schutzart	IP64	
Gehäuse	Aluminium, blau eloxiert (Lichtleiteradapter: Aluminium, schwarz eloxier)	
Gehäuseabmessungen	ca. 90 mm x 65 mm x 35 mm (ohne Anschlussbuchsen und Lichtleiteradapter)	
Stecker	Anschluss an PC: 5-pol. Buchse Typ Binder 712, Anschluss an SPS: 8-pol. Buchse Typ Binder 712 Anschluss an Lichtleiter-Frontends: 2-pol. Adapter senderseitig, 3-pol. Adapter empfängerseitig	
Sender	Superhelle LED (rot, 650 nm), moduliert 100 kHz	
Externes Teachen	über integrierten Taster bzw. über Eingang IN0	
Schaltzustandsanzeige	über 5 gelbe LEDs	
Schnittstelle	RS232, parametrisierbar unter Windows®	
Mittelwertbildung	einstellbar unter Windows: max. 32768 Werte	
Ausgänge	OUT0 bis OUT4, digital (0V/+UB), kurzschlussfest, 100 mA max. Schaltstrom; npn-, pnp-fähig (Hell-, Dunkelschaltung umschaltbar)	
Externer Teacheingang IN0	+Uв-Signal (min. Pulslänge 250 ms, max. Pulslänge 1000 ms)	
Pulsverlängerung	einstellbar unter Windows®: 0 ms 100 ms	
Größe des Sprühwertespeichers	nichtflüchtiges EEPROM mit Parametersätzen für max. 31 Sprühwerte	
EMV-Prüfung nach	DIN EN 60947-5-2 (€	

Тур	SI-JET2-FK-400/400 (Gabel, incl. Lichtleiter)
Gabelweite	400 mm
Rotlichtstrahlverlauf	telezentrisch, 3 x Ø 3 mm, Abstand zwischen den Strahlbündeln: 50 mm
Optisches Filter	Rotlichtfilter RG630
Strahldivergenz	typ. 10 mrad
Schutzart	IP 67
Arbeitstemperaturbereich	-10°C +50°C
Lagertemperaturbereich	-20°C +85°C
Gehäuse	Aluminium, blau eloxiert
Gehäuseabmessungen	Gesamt LxBxH ca. 472 mm x 432 mm x 24 mm
Sender-Lichtleiter	2 Lichtleiteranschlüsse, Silikon-Metall-Mantel, Länge ca. 5000 mm
Empfänger-Lichtleiter	3 Lichtleiteranschlüsse, Silikon-Metall-Mantel, Länge ca. 5000 mm
Druckluftanschluss	sender- und empfängerseitig

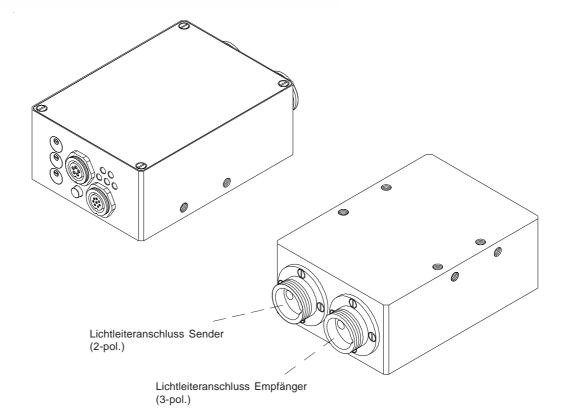


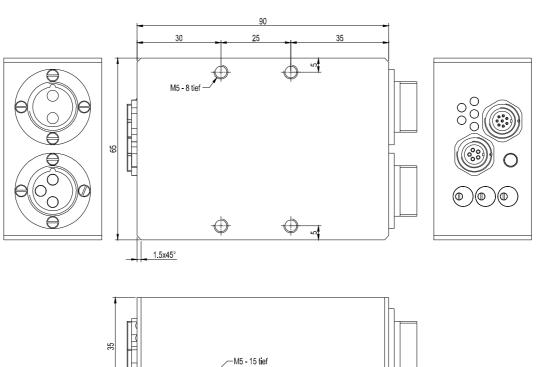


Sensor-Frontend

SI-JET2-FK-400/400

(Sensor-Frontend)

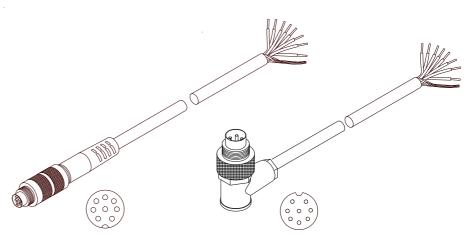

Alle Abmessungen in mm



Kontrollelektronik

SI-JET2-CON2

Alle Abmessungen in mm


Anschlussbelegung

Anschluss SI-JET2-CON2 an SPS: 8-pol. Buchse Binder Serie 712

Pin: 1 2 3	Farbe: weiß braun grün	Belegung: GND (0V) +24VDC (±10%) IN0
4	gelb	OUT0
5	grau	OUT1
6	rosa	OUT2
7	blau	OUT3
8	rot	OUT4

Anschlusskabel:

cab-las8/SPS-(Länge) oder cab-las8/SPS-w-(Länge) (90° gewinkelt) (Standardlänge 2m)

cab-las8/SPS-... (Länge max. 25m, Mantel: PU)

cab-las8/SPS-w-... (Länge max. 25m, Mantel: PU)

Anschluss SI-JET2-CON2 an PC: 5-pol. Buchse Binder Serie 712

Pin: 1	Belegung: GND (0V)
2	TxD
3	RxD
3	IXD

4 +24V (+Ub, OUT) 5 not connected

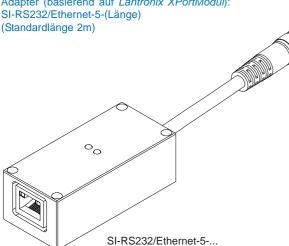

Anschluss über RS232-Schnittstelle am PC:

Anschlusskabel: cab-las5/PC-(Länge) oder cab-las5/PC-w-(Länge) (90° gewinkelt) (Standardlänge 2m)

<u>alternativ:</u>

Anschluss über USB-Schnittstelle am PC:

Anschlusskabel (incl. Treibersoftware): cab-las5/USB-(Länge) oder cab-las5/USB-w-(Länge) (90° gewinkelt) (Standardlänge 2m)



(Länge max. 15m, Mantel: PU) oder cab-las5/PC-w-... (ohne Abb.) (Länge max. 15m, Mantel: PU)

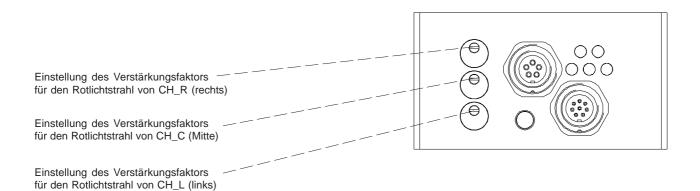
<u>alternativ:</u>

Anschluss an lokales Netzwerk über Ethernet-Bus:

Adapter (basierend auf Lantronix XPortModul): SI-RS232/Ethernet-5-(Länge)

(Länge 0,5m, 1m oder 2m,

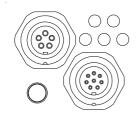
cab-las5/USB-... oder cab-las5/USB-w-... (ohne Abb.) (Länge je max. 5m, Mantel: PU)

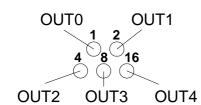

Mantel: PU)

Einstellung

Potentiometer zur Einstellung des Verstärkungsfaktors:

Drehen im Uhrzeigersinn: Signalzunahme


LED-Display


LED-Display:

Mit Hilfe von 5 gelben LEDs wird der erkannte Zeilenvektor am Gehäuse des SI-JET2 Sensors visualisiert. Der am LED-Display angezeigte Zeilenvektor wird im BINARY Modus (OUT BINARY) gleichzeitig als 5-Bit-Binär-Information an den Digitalausgängen OUT0 ... OUT4 der 8-pol. SI-JET2/SPS-Anschlussbuchse ausgegeben.

Der SI-JET2 Sensor kann maximal 31 Zeilenvektoren (0 ... 30) entsprechend der einzelnen Zeilen in der TEACH TABLE verarbeiten. Ein "Fehler" bzw. ein "nicht erkannter Zeilenvektor" wird durch das Aufleuchten aller LEDs angezeigt (OUT0 ... OUT4 Digitalausgänge sind auf HIGH Pegel).

Im DIRECT Modus (OUT DIRECT HI bzw. OUT DIRECT LO) sind maximal 5 Zeilenvektoren (Nr. 0, 1, 2, 3, 4) erlaubt.

0

1

2

3

 \bigcirc \bigcirc \bigcirc \bigcirc

 \bigcirc \bigcirc \bigcirc \bigcirc

 \bigcirc \bigcirc \bigcirc

4

5

6

7

 \bigcirc \bigcirc \bigcirc \bigcirc

 \bigcirc \bigcirc \bigcirc

 \bigcirc \bigcirc \bigcirc

 \bigcirc \bigcirc \bigcirc

8

9

10

11

 \bigcirc

 \bigcirc \bigcirc \bigcirc

12

13

14

15

 \bigcirc \bigcirc \bigcirc

 \bigcirc \bigcirc \bigcirc

17

 \bigcirc \bigcirc \bigcirc

 \bigcirc \bigcirc

16

18

19

 \bigcirc \bigcirc \bigcirc \bigcirc

 \bigcirc \bigcirc

 \bigcirc

 \bigcirc \bigcirc

20

21

22

23

 \bigcirc \bigcirc \bigcirc

24

25

26

27

 \bigcirc

28

29

 \bigcirc 30

 \bigcirc \bigcirc \bigcirc 31

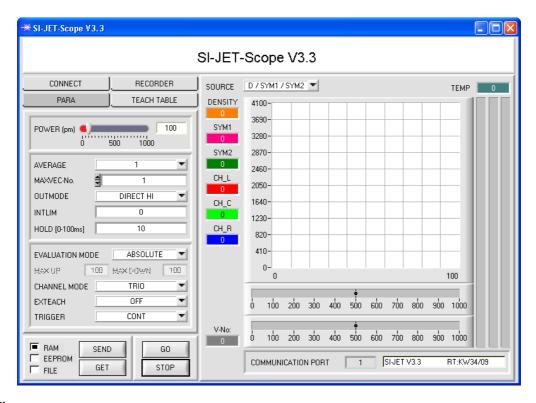
"Fehler" bzw. "nicht erkannt"

Messprinzip

Messprinzip:

Mit Hilfe einer superhellen Rotlicht-LED wird moduliertes Licht in einem Senderlichtleiter gekoppelt und über eine in der Lichtleitergabel integrierte Kollimatoroptik parallel gerichtet. Geeignete Blendentechnik bewirkt, dass drei Rotlichtbündel (Ø je 3 mm, Abstand zueinander 50 mm) den Sendezweig des Senders verlassen und empfangsseitig wiederum über 3 Blenden mittels geeigneter Empfangsoptik auf drei Empfangslichtleiter gerichtet werden.

Über die in der Empfangslichtleiteraufnahme integrierten optoelektronischen Detektoren werden die drei Lichtsignale in drei elektronische Signale konvertiert und über 12-Bit-A/D-Wandler digitalisiert. Kreuzt nun ein Sprühstrahl den Weg der drei Rotlichtbündel, erfolgt eine Abschwächung der jeweiligen Lichtbündel, bedingt durch die Lichtabsorption bzw. Lichtablenkung an den im Sprühstrahl enthaltenen Tröpfchen. Die Abnahme des jeweiligen Signals ist dabei ein Maß für die Tröpfchenkonzentration am Ort des Lichtbündels.



Parametrisierung

Parametrisierung unter Windows® mit Software SI-JET-Scope:

Mit dem SI-JET2 Sprühstrahlkontrollsystem werden folgende drei Messgrößen erfasst und im Produktionsprozess überwacht:

- Sprühstrahldichte (im Folgenden als Dichte oder Density bezeichnet).
- Symmetrie 1 (die beiden äußeren Kanäle werden ins Verhältnis gesetzt).
- Symmetrie 2 (Symmetrie 1 wird mit dem mittleren Kanal ins Verhältnis gesetzt).

Auswertemodi:

Das SI-JET Sprühstrahlkontrollsystem kann mit zwei unterschiedlichen Auswertemodi betrieben werden:

ABSOLUTE: Zur Auswertung wird der aktuelle Zustand der drei Kanäle CH_L, CH_C und CH_R herangezogen.

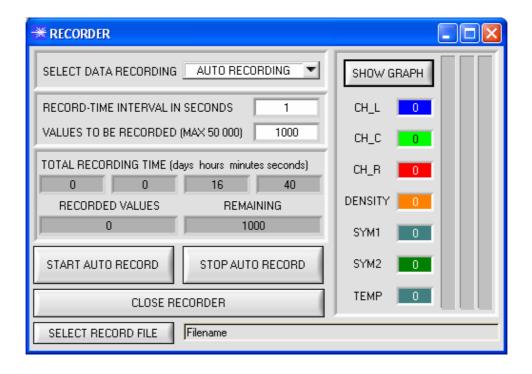
Zur Auswertung wird der aktuelle Zustand der drei Kanäle CH_L, CH_C und CH_R relativ zu deren Maximalwerten innerhalb der RELATIVE:

letzten 60 Sekunden herangezogen.

TEACH-Vorgang:

Der Lernprozess erfolgt entweder über die Parametriersoftware oder über den Teach Eingang (INO PIN3 grün am Kabel cab-las8/SPS) bzw. über den am Gehäuse angebrachten Taster. Beim Teachen über IN0 ist zu beachten, dass die Toleranzwerte für Dichte und Symmetrie einmalig im EEPROM der Kontrollelektronik mit Hilfe der Parametriersoftware abgespeichert werden. Bevor der Eingang INO betätigt wird muss der zu erlernende Zustand dem Sensor-Frontend vorliegen. D.h. zuerst muss das Sprühen angeschaltet und dann INO auf +24V gelegt werden. Der aktuelle Zustand wird in so viele Zeilen der Teach Table eingelernt, wie unter MAXVEC-No. ausgewählt ist. Eine Klassifizierung erfolgt über

unterschiedlich eingestellte Toleranzen.



Datenrekorder

Funktion des Datenrekorders:

Die SI-JET2-Scope Software beinhaltet einen Datenrekorder, der es erlaubt eine gewisse Anzahl von Datenframes abzuspeichern. Das aufgezeichnete File wird auf der Festplatte Ihres PC abgespeichert und kann anschließend mit einem Tabellenkalkulationsprogramm ausgewertet werden.

Das erzeugte File hat acht Spalten und so viele Zeilen, wie Datenframes aufgezeichnet worden sind. Eine Zeile ist wie folgt aufgebaut: Datum und Uhrzeit, CH_L, CH_C, CH_R, DENSITY, SYM1, SYM2, TEMP.

